Safety guides and audits to make your job as a safety professional easier

Controlling Laboratory Hazards

Hierarchy of Controls
Click to enlarge

The Hierarchy of Controls

There are many different types of hazards in the lab. Hazards are generally categorized into two types: 1) hazardous conditions and 2) unsafe work practices/behaviors.

  • Hazardous conditions include unsafe materials, equipment, environment and employees.
  • Unsafe work practices and behaviors include allowing untrained workers to perform hazardous tasks, taking unsafe shortcuts, horseplay, or long work schedules.

To combat these hazardous conditions and unsafe work practices, control strategies, called the "Hierarchy of Controls," have been developed. Traditionally, a hierarchy of strategies to control hazards has been used to implement feasible and effective controls. In our training, we encourage the use of the "Hierarchy of Controls" (HOC) described within the ANSI/ASSP Z10-2012, Occupational Health and Safety Management Systems.

The hierarchy of controls prioritizes intervention strategies based on the premise that the best way to control a hazard is to systematically remove it from the workplace, rather than relying on workers to reduce their exposure. The types of measures that may be used to protect laboratory workers, prioritized from the most effective to least effective, are:

  1. Elimination
  2. Substitution
  3. Engineering controls
  4. Warnings
  5. Administrative controls
  6. Personal protective equipment

The idea behind this hierarchy is that the control methods at the top of the list are potentially more effective and protective than those at the bottom.

  • The first three methods eliminate or reduce the hazard itself.
  • The last three methods attempt to control exposure to the hazard.

Following the hierarchy normally leads to the implementation of inherently safer systems, ones where the risk of illness or injury have been substantially reduced. Let's take a closer look at the hierarchy of control strategies.

Elimination and Substitution

Eliminate the Hazard – Napo

Elimination and substitution, while most effective at reducing hazards, also tend to be the most difficult to implement in an existing process. If the process is still at the design or development stage, elimination and substitution of hazards may be inexpensive and simple to implement. For an existing process, major changes in equipment and procedures may be required to eliminate or substitute for a hazard.

These strategies are considered first because they have the potential of completely eliminating the hazard, thus greatly reducing the probability of an accident. Redesigning or replacing equipment or machinery may be expensive, but remember the average direct and indirect cost of a lost work time injury is over $39,000 and more than a million dollars to close a fatality claim.

Some examples of these two strategies include:

  • Removing the source of excessive temperatures, noise, or pressure
  • Substituting a toxic chemical with a less toxic or non-toxic chemical

Engineering Controls

Toluene
This HVAC unit is engineered to prevent exposure to moving parts.

If elimination or substitution is not possible, OSHA law requires employers to attempt to remove hazards through the use of feasible engineering controls because they also have the potential to eliminate or reduce exposure to hazards in the lab.

These controls focus on eliminating or reducing the hazard at the source of the hazard, during the process, or and at the worker. The basic concept behind engineering controls is that, to the extent feasible, the work environment and the job itself should be designed to eliminate hazards or reduce exposure using three primary control strategies:

  1. Enclosure. Methods to completely isolate the source of the hazard from employees.
  2. Barriers. If complete enclosure does not adequate protect employees, barriers may be installed to keep employees away from the source of exposure.
  3. Ventilation. Local exhaust ventilation removes or dilutes air contaminants to reduce exposure to acceptable levels.

Enclosure

Glove box station
This glove box station protects by completely enclosing the hazard.

When you cannot remove a hazard and cannot replace it with a less hazardous alternative, the next best control in the laboratory is enclosure. Properly enclosing a hazard means that there is no hazard exposure to workers during normal operations. There still will be potential exposure to workers during maintenance operations or if the enclosure system breaks down. For those situations, additional controls such as safe work practices or personal protective equipment (PPE) may be necessary to control exposure.

Some examples of effective enclosure designs are:

  • Complete enclosure of moving parts of machinery;
  • Complete containment of toxic liquids or gases from the beginning to end of a process;
  • Glove box operations to enclose work with dangerous microorganisms, radioisotopes, or toxic substances; and
  • Complete containment of noise, heat, or pressure producing processes with materials especially designed for those purposes.

Barriers

Glove box station
Partial enclosure, a barrier, and ventilation is used to reduce exposure to air contaminants.

When the hazard cannot be removed, replaced, or completely enclosed, the next best approach is to place a barrier or guard between the worker and the hazard to prevent exposure. For more information on effective barriers, see OSHAcademy Course 726, Introduction to Machine Guarding.

Examples of effective barriers include:

  • Machine guarding to separate the hazard from the employee
  • Baffles used as noise-absorbing barriers
  • Nuclear radiation or heat shields

Ventilation

Ventilation involves removing potential air contaminants during normal operations. Consequently, it should be used only in conjunction with other types of controls, such as safe work practices designed specifically for the site condition and/or PPE. In the laboratory, the most common type of ventilation is local exhaust ventilation.

Safe Chemical Handling

Warnings

Warnings may be visual, audible, or both. They may also be tactile.

  • Visual warnings include signs, labels, tags, and lights.
  • Audible warnings include alarms, bells, beepers, sirens, horns and announcement systems.
  • Tactile warnings may include vibration devices or air fans.

Administrative Controls

Administrative controls include the development and deployment of safety policies, processes, procedures, rules, training, scheduling, and safe work practices. Ultimately, effective administrative controls will successfully control the human behaviors that result in most workplace accidents. Examples of laboratory administrative controls include:

  • Developing a Chemical Hygiene Plan, and
  • Developing Standard Operating Procedures for chemical handling.

Administrative controls are only as effective as the safety management system that supports them. It's always better to eliminate the hazard so that you don't have to rely on management controls that tend to work only as long as employees behave.

To make sure these controls are effective in the long term, they must be designed from a base of solid hazard analysis and sustained by a supportive safety culture. They then must be accompanied by adequate resources, training, supervision, and appropriate consequences. Remember, administrative controls should be used in conjunction with, and not as a substitute for engineering controls.

Personal Protective Equipment (PPE)

Click to View Video

Using personal protective equipment is a very important safe work practice. It's important to remember, like other administrative controls, the use of PPE does not control the hazard itself, but rather it merely controls exposure to the hazard by setting up a barrier between the employee and the hazard. Use of PPE may also be appropriate for controlling hazards while engineering controls are being installed or work practices developed.

PPE Drawbacks

The limitations and drawbacks of safe work practices also apply to PPE. Employees need training in why the PPE is necessary and how to use and maintain it. It also is important to understand that PPE is designed for specific functions and are not suitable in all situations. For example, no one type of glove or apron will protect against all solvents. To pick the appropriate glove or apron, you should refer to recommendations on the safety data sheets of the chemicals you are using.

Your employees need positive reinforcement and fair, consistent enforcement of the rules governing PPE use. Some employees may resist wearing PPE according to the rules, because some PPE is uncomfortable and puts additional stress on employees, making it unpleasant or difficult for them to work safely. This is a significant drawback, particularly where heat stress is already a factor in the work environment. An ill-fitting or improperly selected respirator is particularly hazardous, since respirators are used only where other feasible controls have failed to eliminate a hazard.

Interim Measures

When a hazard is recognized, the preferred correction or control cannot always be accomplished immediately. However, in virtually all situations, interim measures can be taken to eliminate or reduce worker risk. These can range from taping down wires that pose a tripping hazard to actually shutting down an operation temporarily.

The importance of taking these interim protective actions cannot be overemphasized. There is no way to predict when a hazard will cause serious harm, and no justification to continue exposing workers unnecessarily to risk. By the way, OSHA believes there is always some kind of interim measure that can be used to temporarily reduce or remove a hazard.

barriers

Maintenance Strategies to Control Hazards

What two general types of maintenance processes are needed?

  • Preventive maintenance to make sure equipment and machinery operates safely and smoothly
  • Corrective maintenance to make sure equipment and machinery gets back into safe operation quickly

Hazard Tracking Procedures

An essential part of any day-to-day safety and health effort is the correction of hazards that occur in spite of your overall prevention and control program. Documenting these corrections is equally important, particularly for larger sites.

Documentation is important because:

  • It keeps management and safety staff aware of the status of long-term correction items.
  • It provides a record of what occurred, should the hazard reappear at a later date.
  • It provides timely and accurate information that can be supplied to an employee who reported the hazard.

Final Thoughts

The hierarchy of controls is the standard system of strategies to effectively eliminate workplace hazards. Remember, the first question to ask when considering ways to control the hazards in your laboratory is, "can we eliminate, replace, or use engineering controls?" You will more than likely use a combination of strategies to control hazards. Whatever it takes, do it. You are not just saving a life: you are saving someone's father, mother, son, or a daughter. It's worth the effort.

Instructions

Before beginning this quiz, we highly recommend you review the module material. This quiz is designed to allow you to self-check your comprehension of the module content, but only focuses on key concepts and ideas.

Read each question carefully. Select the best answer, even if more than one answer seems possible. When done, click on the "Get Quiz Answers" button. If you do not answer all the questions, you will receive an error message.

Good luck!

1. To combat these hazardous conditions and unsafe work practices in the laboratory, control strategies, called the _____ have been developed?

2. Elimination, as a hazard control strategy is considered the top priority because it has the potential to do which of the following?

3. Which of the following hazard control strategies is aimed at reducing employee exposure to hazards that other controls fail to eliminate?

4. There is usually no hazard exposure to workers during normal operations by _____.

5. To pick the appropriate glove or apron, you should refer to recommendations on the _____ of the chemicals you are using.


Have a great day!

Important! You will receive an "error" message unless all questions are answered.