Welcome!

In 1913, the federal Bureau of Labor Statistics (BLS) documented 23,000 industrial deaths among a workforce of 38 million people -- equivalent to a shocking 61 deaths per 100,000 workers. In 1999, the latest year for which figures are available, BLS reported 6,023 deaths, among a workforce of 134 million people, or fewer than 5 deaths per 100,000. Fewer, but still too many. Sound hazard identification and control is partly responsible for this success story.

Identifying and controlling workplace hazards involves many processes. It’s more than simply “inspecting out hazards.” Before we can effectively control hazardous conditions and unsafe behaviors, we need to be familiar with their characteristics and the necessary processes to make sure they are promptly identified and analyzed. The questions and exercises in this workshop will help us become more familiar with hazard control concepts and we’ll discuss the many types of hazards that may exist in the workplace. We’ll discuss the various elements of an effective hazard control program, the nature of hazards in the workplace, and finally we’ll put everything we’ve learned together in a final exercise.

The purpose of this workshop is to give you the basic knowledge and skills to identify, analyze, and apply control strategies to eliminate or reduce hazardous conditions and unsafe practices in the workplace.

Workshop goals:

- Explore the elements of an effective hazard identification and control program.
- Discuss the steps in the hazard identification and control process.
- Complete the hazard identification and control worksheet.

Introductions

Housekeeping
IDENTIFYING HAZARDS

It takes a hazard and someone exposed to the hazard to produce an accident.

Hazard + Exposure \Rightarrow Accident

What is a "hazard"? Complete the sentence below.

An U
or C
or P
that could cause an I
or I
to an P
(Extra Credit) and it’s E

What is “Exposure?”

- How close are you to the "danger zone"?
- Physical exposure - generally arm’s length
- Environmental exposure - could be everyone in facility.
SURFACE SYMPTOMS - clues to underlying root causes

• **Hazardous condition(s)**...tools, equipment, environment, people
• **Unsafe or inappropriate behavior(s)**...practices and procedures
• May exist or be performed by **anyone, anytime, anywhere**
• Factors that would **directly cause or contribute** to an incident or accident
• These are the **outputs** of the safety management system. Important clues.

• Conditions account for _____ % of all workplace accidents.
• Behaviors account for _____ % of all workplace accidents.
• Uncontrollable acts account for ____ % of all workplace accidents.

(SAIF Loss Control Approach, Foundation, p. 9)

UNDERLYING ROOT CAUSES - Defects in safety management system design and implementation that cause the symptoms.

System Design Defects - Missing or inadequate planning

• One or more inadequate policies, plans, programs, processes, procedures, practices
• Inadequate resources - money, time, people, materials, etc.
• Assures inadequate implementation of the safety management system
• Have the greatest positive or negative impact on the safety management system

System Implementation Defects - Failure to carry out the plan.

• Failure to accomplish effective safety policies, plans, processes, procedures, practices, or…
• Effectively accomplishing inadequate safety policies, plans, processes, procedures, practices
• Produce common hazardous conditions and/or unsafe behaviors, or
• Produce repeated unique hazardous conditions and/or unsafe behaviors
How to develop an effective safety and health checklist

1. Determine applicable state safety & health rules for the workplace. Call the OSHA technical services if needed to get assistance. Get copies of applicable rules.

2. Review rules and use those you feel apply to your workplace. What rules, if violated would result in serious physical harm or fatality?

3. Develop applicable checklist questions that are not addressed in the rules. Don’t get “tunnel vision.”

Who’s involved in the inspection process?

What is a weakness inherent in the inspection process?

What process(s) can we use to overcome this weakness?

Observation

Observation, informal and formal, are quite important in daily workplace safety.

- Employees and managers can spot hazardous conditions and unsafe or inappropriate behaviors while they conduct their other tasks.
- Formal observation programs can be successful tools for gathering and analyzing data so that safety can be improved.
Writing Effective Inspection Reports

It’s important to write an inspection report that effectively “sells” management on corrective actions. The following inspection report format is designed to give management useful information describing hazards and “bottom line” costs/benefits needed to justify corrective actions. See the example in the appendix.

1. The **Background/Introduction** section briefly outlines:
 - What the report is
 - Who conducted the inspection
 - Where it was conducted
 - Why it was conducted

2. The **Findings** section give information about:
 - Hazardous conditions and unsafe work practices
 - Safety system inadequacies
 - Estimated costs if an accident occurs as a result of the hazard are also indicated

3. The **Recommendations** section provides:
 - Strategies to eliminate/reduce hazards
 - Improvements to system inadequacies
 - Estimates of the investment required to implement changes

4. The **Conclusion/Summary** section summarizes:
 - Costs and investments required if all changes are approved
 - Return on investment
 - Other benefits realized

Report Identified Hazards

- Watch your language. Is the report considered a “concern” or a “complaint?”
- Keep the process simple. How can we do that?
- Recognize employees who report hazards. Soon, certain, significant, sincere

How can we most effectively recognize employees for reporting hazards?
Job Hazard Analysis

- Break a job or task into **specific steps**.
- Analyze each step for specific **hazardous conditions** and **unsafe practices**.
- Develop **preventive measures** in each step to eliminate or reduce the hazards.
- Integrate **preventive measures** into training and standard operating procedures (SOP’s).

SAMPLE JOB HAZARD ANALYSIS WORKSHEET

<table>
<thead>
<tr>
<th>Job Description:</th>
<th></th>
</tr>
</thead>
</table>

Step 1 Description: ___

<table>
<thead>
<tr>
<th>Hazards</th>
<th>Preventive Measure(s) Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td></td>
</tr>
</tbody>
</table>

Step 2 Description: ___

<table>
<thead>
<tr>
<th>Hazards</th>
<th>Preventive Measure(s) Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td></td>
</tr>
</tbody>
</table>

Step 3 Description: ___

<table>
<thead>
<tr>
<th>Hazards</th>
<th>Preventive Measure(s) Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td></td>
</tr>
</tbody>
</table>

Safe Job Procedure

__

__

__

__

__

Why is it important to involve the employee in the JHA process?

__

__
Incident/Accident Analysis

Steps for conducting an incident/accident analysis

Gather information

Step 1 - Secure the accident scene

Step 2 - Collect facts about what happened

Step 3 - Develop the sequence of events

Step 4 - Determine the causes

Analyze the facts

Step 5 - Recommend improvements

Step 6 - Write the report

Implement Solutions

What is the purpose of the incident/accident analysis?

Be ready when accidents happen

When a serious accident occurs in the workplace, everyone will be too busy dealing with the emergency at hand to worry about putting together an investigation plan, so now... before the accident occurs... is the time to develop effective accident investigation procedures. They should include as a minimum procedures that:

1. Write a clear policy statement.
2. Identify those authorized to notify outside agencies (fire, police, etc.)
3. Designate those responsible to investigate accidents.
4. Train all accident investigators.
5. Establish timetables for conducting the investigation and taking corrective action.
6. Identify those who will receive the report and take corrective action.
Weed out the causes of injuries and illness

1. Direct Cause of Injury
 - Always the harmful transfer of energy.
 - Kinetic, thermal, chemical, etc.
 - Contact with, exposure to, etc.

2. Surface Causes of the Accident
 - Specific/unique hazardous conditions and/or unsafe actions
 - Produce or contribute to the accident
 - May exist/occur anytime, anyplace
 - Involve the victim and others

3. Root Causes of the Accident
 - Failure to design and/or carry out safety policies, programs, plans, processes, procedures, practices
 - Exist prior to surface causes
 - Result in common or repeated hazards
 - Under control of management
 - Failure can occur anytime, anywhere

Any way you look at it, system design is the key to effective safety.

If design is flawed, yet perfectly implemented, the system fails. If design is perfect, yet implementation is flawed, the system fails as a result of design flaws in other related processes.
Analyze Probability and Severity to Determine Risk

It’s extremely valuable, when writing an effective inspection report, to include estimates of the risk a hazard imposes on employees. Risk may be thought of as the sum of the probability and severity of a potential accident.

Probability. The probability describes the likelihood that an injury or accident will occur if an employee is exposed to the danger point.

- **Unlikely (U)** – Factors considered indicate it would be unlikely that an accident could occur.

- **Likely (L)** – Factors considered indicate it would be likely that an accident could occur.

- **Highly Likely (H)** – Factors considered indicate it would be very likely that an accident could occur.

Severity. The severity of an accident should be based on the degree of injury or illness that is reasonably predictable. Severity may also be expressed as a rating.

- **Minor injury/Illness (M).** Described by OSHA as "Other Than Serious Physical Harm" – The victim will most likely be able to continue working in the same job at the same level of proficiency.

- **Serious Injury/Illness (S).** Described by OSHA as "Serious Physical Harm" - The victim will most likely not be able to continue working in the same job at the pre-injury level of proficiency.

- **Death (D).** The victim will most likely suffer a fatal injury or illness.

Team Exercise: List factors that will increase the probability and severity of an injury.

Factors increasing probability:

__
__
__

Factors increasing severity:

__
__
__
Engineering Controls consist of substitution, isolation, ventilation, and equipment modification. These controls focus on the source of the hazard, unlike other types of controls that generally focus on the employee exposed to the hazard. The basic concept behind engineering controls is that, to the extent feasible, the work environment and the job itself should be designed to eliminate hazards or reduce exposure to hazards.

Engineering controls are based on the following broad principles:

1. If feasible, **design the facility, equipment, or process to remove the hazard** and/or substitute something that is not hazardous or is less hazardous.
 - Redesigning, changing, or substituting equipment to remove the source of excessive temperatures, noise, or pressure;
 - Redesigning a process to use less toxic chemicals;
 - Redesigning a work station to relieve physical stress and remove ergonomic hazards; or
 - Designing general ventilation with sufficient fresh outdoor air to improve indoor air quality and generally to provide a safe, healthful atmosphere.

2. If removal is not feasible, **enclose the hazard to prevent exposure** in normal operations.
 - Complete enclosure of moving parts of machinery;
 - Complete containment of toxic liquids or gases;
 - Glove box operations to enclose work with dangerous microorganisms, radioisotopes, or toxic substances; and
 - Complete containment of noise, heat, or pressure-producing processes.

3. Where complete enclosure is not feasible, **establish barriers or local ventilation to reduce exposure** to the hazard in normal operations. Examples include:
 - Ventilation hoods in laboratory work;
 - Machine guarding, including electronic barriers;
 - Isolation of a process in an area away from workers, except for maintenance work;
 - Baffles used as noise-absorbing barriers; and
Management Controls

Hazard + Exposure ⇔ Accident

Any procedure which significantly limits daily exposure by control or manipulation of the work schedule or manner in which work is performed is considered a means of management control.

Management controls may result in a reduction of exposure through such methods as changing work habits, improving sanitation and hygiene practices, or making other changes in the way the employee performs the job. The use of personal protective equipment is not considered a means of management control.

1. Some of these **general practices** are very general in their applicability. They include housekeeping activities such as:
 - Removal of tripping, blocking, and slipping hazards;
 - Removal of accumulated toxic dust on surfaces; and
 - Wetting down surfaces to keep toxic dust out of the air.

2. Other safe work practices apply to specific jobs in the workplace and involve **specific procedures** for accomplishing a job. To develop these procedures, you conduct a job hazard analysis.

3. Measures aimed at reducing employee exposure to hazard by **changing work schedules**. Such measures include:
 - Lengthened rest breaks,
 - Additional relief workers,
 - Exercise breaks to vary body motions, and
 - Rotation of workers through different jobs

Why are engineering controls considered superior to management controls?

__

__

__
Control hazards with effective education and training

Safety education tells why safe practices and procedures are important. Education explains the natural consequences (hurt) and system consequences (discipline) that result from unsafe behavior. Training explains how to perform safe behaviors and procedures.

Why is it important to educate as well as train all employees?

How do we know safety education and training has been effective?

If it isn’t in writing…it didn’t get done…

Sample training certification for specific tasks

Trainee certification. I have received on-the-job training from the trainer listed below on those subjects below (or on other side of sheet):

- [list procedure(s)]
- [list practice(s)]
- [related policies, rules, accountabilities]

This training has provided me adequate opportunity to practice to determine and correct skill deficiencies. I understand that performing these procedures/practices safely is a condition of employment. I fully intend to comply with all safety and operational requirements discussed. I understand that failure to comply with these requirements may result in progressive discipline (or corrective actions) up to and including termination.

___________________________________ _____________________
(Trainee) (Date)

Trainer certification. I conducted on-the-job training on the subjects for the trainee(s) listed above. I explained procedures/practices and policies, answered all questions, observed practice, and tested each trainee individually. I have determined that the trainee(s) listed above has/have adequate knowledge and skills to safety perform these procedures/practices.

___________________________________ _____________________
(Trainer) (Date)
Personal Protective Equipment (PPE)

When exposure to hazards cannot be engineered completely out of normal operations or maintenance work, and when safe work practices and administrative controls cannot provide sufficient additional protection from exposure, personal protective clothing and/or equipment may be required.

PPE includes such items as:

- Face shields
- Steel-toed shoes
- Safety glasses
- Hard hats
- Knee guards
- Leather aprons
- Mesh gloves
- Life jackets
- Respirators
- Ear muffs
- Safety goggles
- Harness

What might be some of the drawbacks of reliance solely on PPE to protect workers?

__
__
__
__
__
__

Interim Measures

When a hazard is recognized, the preferred correction or control cannot always be accomplished immediately. However, **in virtually all situations, interim measures can be taken** to eliminate or reduce worker risk. These can range from taping down wires that pose a tripping hazard to actually shutting down an operation temporarily. The importance of taking these interim protective actions cannot be overemphasized. There is no way to predict when a hazard will cause serious harm, and no justification to continue exposing workers unnecessarily to risk.
Effective Maintenance Processes

What two general types of maintenance processes are needed?

1. Preventive maintenance to make sure equipment and machinery operates safely and smoothly.
2. Corrective maintenance to make sure equipment and machinery gets back into safe operation quickly.

How can we make sure corrective maintenance is completed quickly?

Hazard Tracking Procedures

An essential part of any day-to-day safety and health effort is the correction of hazards that occur in spite of your overall prevention and control program. Documenting these corrections is equally important, particularly for larger sites.

Documentation is important because:

- It keeps management and safety staff aware of the status of long-term correction items;
- It provides a record of what occurred, should the hazard reappear at a later date; and
- It provides timely and accurate information that can be supplied to an employee who reported the hazard.

XYZ Hazard Tracking Log

<table>
<thead>
<tr>
<th>Hazard Number</th>
<th>Description</th>
<th>Reported by</th>
<th>Date Reported</th>
<th>Correct by</th>
<th>Responsible Supervisor</th>
<th>Date Corrected</th>
</tr>
</thead>
<tbody>
<tr>
<td>0301</td>
<td>Lathe #3, needs guard</td>
<td>Smith</td>
<td>9/9/03</td>
<td>9/15/03</td>
<td>Jones</td>
<td>9/14/03</td>
</tr>
<tr>
<td>0302</td>
<td>Dock needs warning stripes</td>
<td>Wilson</td>
<td>9/12/03</td>
<td>9/30/03</td>
<td>Jordan</td>
<td></td>
</tr>
</tbody>
</table>
Plan evaluation

Team Exercise: Discuss the processes your organization uses to evaluate the safety management system.

__
__
__
__

Sample Checklist

___ 1. A comprehensive baseline hazard survey has been conducted within the past five years.
___ 2. Effective job hazard analysis (JHA) is performed, as needed.
___ 3. Effective safety and health inspections are performed regularly.
___ 4. Effective surveillance of established hazard controls is conducted.
___ 5. An effective hazard reporting system exists.
___ 6. Change analysis is performed whenever a change in facilities, equipment, materials, or processes occurs.
___ 7. Expert hazard analysis is performed, as needed.
___ 8. Hazards are eliminated or controlled promptly.
___ 9. Hazard control procedures demonstrate a preference for engineering methods.
___ 10. Effective engineering controls are in place, as needed.
___ 11. Effective administrative controls are in place, as needed.
___ 12. Safety and health rules are written.
___ 13. Safe work practices are written.
___ 14. Personal protective equipment is effectively used as needed.
___ 15. Effective preventive and corrective maintenance is performed.
___ 16. Emergency equipment is well maintained.
___ 17. Engineered hazard controls are well maintained.
___ 18. Housekeeping is properly maintained.
___ 19. The organization is prepared for emergency situations.
___ 20. The organization has an effective plan for providing competent emergency medical care to employees and others present on the site.
___ 21. An early-return-to-work program is in place at the facility.
Continual improvement

Consider how the change you propose will impact all elements of the safety management system.

An effective safety management system model includes at least seven critical elements:

1. Management Commitment
2. Accountability
3. Employee Involvement
4. Hazard Identification and Control
5. Incident/Accident Investigation
6. Training
7. Periodic Evaluation

As you can see, the hazard identification and control program primarily addresses Element 4. However, it’s critically important that all seven elements above be applied in support of the program.

Successful change requires effective design and implementation

Plan
Implement improvements
Monitor process
Adopt, abandon, or revise program as needed

Continual feedback

What will happen if a change is not carefully designed or carried out effectively?

__
__
__

Do best intentions guarantee a change will be successful? Why?

__
__
__
THE ANALYSIS WORKSHEET!

Team Exercise: View photos and use the worksheet below to determine hazards, system weaknesses, accident types and costs, probability/severity, corrective actions and system improvement.

Hazard Analysis Worksheet

Describe the Hazard:

Hazardous condition - __
__
__

Unsafe behavior - __
__
__

Possible Accident Type(s): __

Accident Cost Estimates: Direct - $_______ Indirect - $_______ Total - $________

Risk: Probability: ________ Severity:___________ Risk is: High Moderate Low

Recommended Corrective Action(s):

Engineering controls - __ Investment - $ _________

Management controls - __ Investment - $ _________

Personal Protective Equipment - __ Investment - $ _________

Recommended System Improvement(s):

Design - __ Investment - $ _________

Implementation - __ Investment - $ _________

Benefits: Return on the investment = \(\frac{(Total \ Accident \ Costs)}{(Investment)} \times 100 = \) ____ %
Hazard Analysis Worksheet

Describe the Hazard:

<table>
<thead>
<tr>
<th>Hazardous condition</th>
<th>__</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>__</td>
</tr>
<tr>
<td></td>
<td>__</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Unsafe behavior</th>
<th>__</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>__</td>
</tr>
<tr>
<td></td>
<td>__</td>
</tr>
</tbody>
</table>

Possible Accident Type(s):

- __

Accident Cost Estimates:

<table>
<thead>
<tr>
<th>Direct</th>
<th>Indirect</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>$______</td>
<td>$______</td>
<td>$______</td>
</tr>
</tbody>
</table>

Risk:

- Probability: ________
- Severity: ______________
- Risk is: **High** **Moderate** **Low**

Recommended Corrective Action(s):

<table>
<thead>
<tr>
<th>Engineering controls</th>
<th>__</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Investment - $ ________</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Management controls</th>
<th>__</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Investment - $ ________</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Personal Protective Equipment</th>
<th>__</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Investment - $ ________</td>
</tr>
</tbody>
</table>

Recommended System Improvement(s):

<table>
<thead>
<tr>
<th>Design</th>
<th>__</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Investment - $ ________</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Implementation</th>
<th>__</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Investment - $ ________</td>
</tr>
</tbody>
</table>

Benefits:

Return on the investment = (Total Accident Costs)________ x 100 = _____ %

(Investment)________
Before you run…let’s review

1. Conditions cause around ____ % of the accidents in the workplace, while behaviors account for about ____ %?

2. Which of the following is not considered a surface symptom?
 a. An unguarded saw.
 b. A missing MSDS.
 c. PPE training does not contain practice of spill procedures.
 d. A maintenance worker fails to wear eye protection.
 e. A forklift driver speeds around a corner in the warehouse.

3. All of the following are system (root) causes, except?
 a. A staff member fails to review safety rules during orientation
 b. No lockout/tagout procedures in place
 c. A missing training plan
 d. Supervisors are ignoring safety rules
 e. An inspection process does not include machine guarding hazards

4. Engineering controls change ____________. Work practice and administrative controls change ____________.
 b. Behavior, things
 a. Objects, behavior
 c. Awareness, attitude
 d. PPE, performance

5. Why is it important to focus on fixing the system, not the blame?

Reference Materials
437-001-0765 Rules for Workplace Safety Committees.

The purpose of a safety committee is to bring workers and management together in a non-adversarial, cooperative effort to promote safety and health in each workplace. A safety committee assists the employer and makes recommendations for change.

Hazard assessment and control.

The safety committee can assist the employer in evaluating the employer's accident and illness prevention program, and make written recommendations to improve the program where applicable. Additionally, the safety committee can:

- Establish procedures for workplace inspections by the safety committee inspection team to locate and identify safety and health hazards
- Conduct workplace inspections at least quarterly; and
- Recommend to the employer how to eliminate hazards and unsafe work practices in the workplace

The inspection team can include employer and employee representatives and can document in writing the location and identity of the hazards and make recommendations to the employer regarding correction of the hazards.

Quarterly inspections of satellite locations can be conducted by the committee team or by a person designated at the location.

Mobile work sites or locations and activities which do not lend themselves to a quarterly schedule can be inspected by a designated person as often as OSHA occupational safety and health rules require and/or the committee determines is necessary.

The person designated to carry out inspection activities at the locations can be selected by the employer and can receive training in hazard identification in the workplace.

- Safety and health planning. The safety committee can establish procedures for the review of all safety and health inspection reports made by the committee. Based on the results of the review, the committee can make recommendations for improvement of the employer's accident and illness prevention program.
- Accountability. The safety committee can evaluate the employer's account-ability system and make recommendations to implement supervisor and employee accountability for safety and health.
- Accident investigation. The safety committee can establish procedures for investigating all safety-related incidents including injury accidents, illnesses and deaths. This rule can not be construed to require the committee to conduct the investigations.
Inspect to Identify Hazards Types

1. **Acceleration.** When we speed up or slow down too quickly.

2. **Vibration/Noise.** Produce adverse physiological and psychological effects.

3. **Toxics.** Toxic to skin and internal organs.

4. **Radiation.** Non-ionizing - burns. **Ionizing** destroys tissue.

5. **Ergonomics.** Lifting, lowering, pushing, pulling, twisting.

6. **Pressure.** Increased pressure in hydraulic and pneumatic systems.

7. **Mechanical.** Pinch points, sharp points and edges, weight, rotating parts, stability, ejected parts and materials, impact.

8. **Heat/Temperature.** Extremes in either can cause trauma, illness.

9. **Flammability/Fire.** In order for combustion to take place, the fuel and oxidizer must be present in gaseous form.

10. **Explosives.** Explosions result in large amounts of gas, heat, noise, light and over-pressure.

11. **Electrical contact.** Exposure to electrical current.

12. **Chemical reactions.** Chemical reactions can be violent, can cause explosions, dispersion of materials and emission of heat.

13. **Biologicals.** Primarily airborne and bloodborne viruses.

Determine the number of hazard types that are present in your workplace. ________

What does the following statement mean?

“Hazards are merely symptoms of bigger problems.”

To help educate decision-makers about the natural consequences of the hazard you have identified, it’s important to describe the type of accident that might result if corrective actions aren’t taken.

Struck-by. A person is forcefully struck by an object. The force of contact is provided by the object.

Struck-against. A person forcefully strikes an object. The person provides the force or energy.

Contact-by. Contact by a substance or material that, by its very nature, is harmful and causes injury.

Contact-with. A person comes in contact with a harmful substance or material. The person initiates the contact.

Caught-on. A person or part of his/her clothing or equipment is caught on an object that is either moving or stationary. This may cause the person to lose his/her balance and fall, be pulled into a machine, or suffer some other harm.

Caught-in. A person or part of him/her is trapped, or otherwise caught in an opening or enclosure.

Caught-between. A person is crushed, pinched or otherwise caught between a moving and a stationary object, or between two moving objects.

Fall-To-surface. A person slips or trips and falls to the surface he/she is standing or walking on.

Fall-To-below. A person slips or trips and falls to a level below the one he/she was walking or standing on.

Over-exertion. A person over-extends or strains himself/herself while performing work.

Bodily reaction. Caused solely from stress imposed by free movement of the body or assumption of a strained or unnatural body position. A leading source of injury.

Over-exposure. Over a period of time, a person is exposed to harmful energy (noise, heat), lack of energy (cold), or substances (toxic chemicals/atmospheres).
More about OSHA policy on employee exposure and hazard abatement

Proximity to the Hazard. The analyst should fully document exposure for every apparent incident/accident and the proximity of workers to the point of danger of the operation.

Observed Exposure. Employee exposure is established if anyone witnesses, observes, or monitors exposure of an employee to the hazardous or suspected hazardous condition. Where a standard requires engineering or management controls (including work practice or scheduling controls), employee exposure exists regardless of the use of personal protective equipment.

Unobserved Exposure. Where employee exposure was not observed, witnessed, or monitored by another employee or manager, employee exposure is established if it is determined through witness statements or other evidence that exposure to a hazardous condition occurred, continues to occur, or could recur.

In fatality/catastrophe (or other "accident") investigations, employee exposure is established if the investigator determines, through written statements or other evidence, that exposure to a hazardous condition occurred at the time of the accident.

In other circumstances where the investigator determines that exposure to hazardous conditions has occurred in the past, such exposure may serve as the basis for a violation when employee exposure has occurred in the previous six months.

Potential Exposure. The possibility that an employee could be exposed to a hazardous condition exists when the employee can be shown to have access to the hazard. Potential employee exposure could include one or more of the following:

- When a hazard has existed and could recur because of work patterns, circumstances, or anticipated work requirements and it is reasonably predictable that employee exposure could occur.
- When a safety or health hazard would pose a danger to employees simply by employee presence in the area and it is reasonably predictable that an employee could come into the area during the course of the work, to rest or to eat at the jobsite, or to enter or to exit from the assigned workplace.
- When a safety or health hazard is associated with the use of unsafe machinery or equipment or arises from the presence of hazardous materials and it is reasonably predictable that an employee could use the equipment or be exposed to the hazardous materials in the course of work.

Hazard vs Abatement. OSHA does not mandate a particular hazard abatement measure, but only requires an employer to render the workplace free of certain hazards by any feasible and effective means which the employer wishes to utilize. For example:

- Employees doing sanding operations may be exposed to the hazard of fire caused by sparking in the presence of magnesium dust. One of the abatement methods may be training and supervision. The "hazard" is the exposure to the potential of a fire; it is not the lack of training and supervision.
- In a hazardous situation involving high pressure gas where the employer has failed to train employees properly, has not installed the proper high pressure equipment, and has improperly installed the equipment that is in place, there are three abatement measures which the employer failed to take; there is only one hazard (viz., exposure to the hazard of explosion due to the presence of high pressure gas) and hence only one general duty clause citation.
Foreseeable Hazards. The hazard for which OSHA issues a citation must be reasonably foreseeable. All the factors which could cause a hazard need not be present in the same place at the same time in order to prove foreseeability of the hazard; e.g., an explosion need not be imminent. For example:

- If combustible gas and oxygen are present in sufficient quantities in a confined area to cause an explosion if ignited but no ignition source is present or could be present, no OSHA violation would exist. If an ignition source is available at the workplace and the employer has not taken sufficient safety precautions to preclude its use in the confined area, then a foreseeable hazard may exist.

It is necessary to establish the reasonable foreseeability of the general workplace hazard, rather than the particular hazard which led to the accident. For example:

- A titanium dust fire may have spread from one room to another only because an open can of gasoline was in the second room. An employee who usually worked in both rooms was burned in the second room from the gasoline. The presence of gasoline in the second room may be a rare occurrence. It is not necessary to prove that a fire in both rooms was reasonably foreseeable. It is necessary only to prove that the fire hazard, in this case due to the presence of titanium dust, was reasonably foreseeable.

Recognized Hazards. Recognition of a hazard can be established on the basis of industry recognition, employer recognition, or "common sense" recognition. The use of common sense as the basis for establishing recognition can be limited to special circumstances.

- **Industry Recognition.** A hazard is recognized if the employer's industry recognizes it. Recognition by an industry, other than the industry to which the employer belongs, is generally insufficient to prove industry recognition. Although evidence of recognition by the employer's specific branch within an industry is preferred, evidence that the employer's industry recognizes the hazard may be sufficient.

- **Employer Recognition.** A recognized hazard can be established by evidence of actual employer knowledge. Evidence of such recognition may consist of written or oral statements made by the employer or other management or supervisory personnel during or before the OSHA inspection, or instances where employees have clearly called the hazard to the employer’s attention.

- **Common Sense Recognition.** If industry or employer recognition of the hazard cannot be established, recognition can still be established if it is concluded that any reasonable person would have recognized the hazard. This argument is used by OSHA only in flagrant cases.
Hazardous Conditions

<table>
<thead>
<tr>
<th>Damage to</th>
<th>equipment</th>
<th>machinery</th>
<th>tools</th>
<th>materials</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moving parts:</td>
<td>rotating</td>
<td>cutting</td>
<td>reciprocating</td>
<td>transverse</td>
</tr>
<tr>
<td></td>
<td>pinching</td>
<td>punching</td>
<td>shearing</td>
<td>bending</td>
</tr>
<tr>
<td>Chemicals</td>
<td>toxic</td>
<td>flammable</td>
<td>explosive</td>
<td></td>
</tr>
<tr>
<td>Atmospheres</td>
<td>toxic</td>
<td>flammable</td>
<td>explosive</td>
<td>oxygen deficient</td>
</tr>
<tr>
<td>Electrical</td>
<td>cords</td>
<td>grounding</td>
<td>exposed circuits</td>
<td>other</td>
</tr>
<tr>
<td>Temperature</td>
<td>cold</td>
<td>hot</td>
<td>variation</td>
<td>other</td>
</tr>
<tr>
<td>Lighting</td>
<td>too little</td>
<td>too much</td>
<td>glare</td>
<td>other</td>
</tr>
<tr>
<td>Noise</td>
<td>nuisance</td>
<td>excessive</td>
<td>continuous</td>
<td>intermittent</td>
</tr>
<tr>
<td>Location</td>
<td>at elevation</td>
<td>confined space</td>
<td>vehicle</td>
<td>water</td>
</tr>
<tr>
<td>Design</td>
<td>workstation</td>
<td>equipment</td>
<td>machinery</td>
<td>materials</td>
</tr>
</tbody>
</table>

Other: __

Exposure/Work Practices

Number of employees exposed (may contact) hazards

Frequency of exposure: continual /min /hr /shift /week /month /year

Duration of exposure: continual mins hrs days weeks

Work under stress: mental physical Describe

Nature of work: piecework prolonged standing/sitting posture extremes at elevation confined space other: Describe

Root Causes - Defects in design and/or implementation

Accountability	Non-existent	Inconsistent	Consistent
Training	Little - None	General	Comprehensive
Supervision	Little- none	Occasional	Continual
Related Policies	Not addressed	Informal	Formal
Rules	None	Informal	Formal
Resources	None	Poor quality	Insufficient

Other: __

Most probable outcome

Accident type

Nature of Injury/Illness
Sample PPE Assessment & Certification Worksheet

(Note: This worksheet, or any other worksheet used to assess the worksite for PPE is not mandatory. However, certification that a PPE assessment has been completed is required by the PPE standard.)

Assessment conducted by: _______________________________ Date: _______________________________

Task __ Department ____________________________

Instructions

1. Conduct a Job Safety Analysis of the above task.
2. List below the hazards found in the JSA.
3. If engineering or management practices cannot eliminate the hazards or are not feasible, determine the appropriate PPE for each hazard. Note: If you are not sure about appropriate PPE, consult your OSHA consultant or insurer for assistance.

Summary of Task Hazards and PPE Required

Impact by: __ materials __ equipment __ objects __ co-worker __ other (describe) __

PPE required: (head, eye, foot, etc.) __

Contact with: __ stationary object __ moving object __ sharp object __ other (describe) __

PPE required: (foot, head, etc.) __

Fall: __ from elevation __ to surface __ slipping __ tripping __ other (describe) __

PPE required: (fall, restraint systems) __

Caught in, under, between: __ running or meshing objects __ moving object __ stationary object __ rolling vehicle __ collapsing materials/cave-in __ other (describe) __

PPE required: (hand, foot, etc.) __

Overexposure: __ noise __ heat __ cold __ temperature variation __ radiation. List dBA ______ Temp ______ F.

PPE required: (hearing, respiratory, clothing, eye, etc.) __

Inhalation of: __ hot __ cold __ dust __ mists __ vapors __ smoke __ gasses __ fibers __ biohazards __

PPE required: (respiratory, face, etc.) __

Ingestion of: __ hot __ cold __ acids __ bases __ caustics __ poisons __ dust __ mists __ vapors __ smoke __ gasses __ radiation __ fibers __ other (describe) __

PPE required: (respiratory, face, etc.) __

Absorption of: __ acids __ bases __ caustics __ poisons __ hazardous chemicals __ other (describe) __

PPE required: (hand, face, eye, clothing, etc.) __

Skin contact with: __ hot liquid __ molten metal __ sparks __ acids __ bases __ caustics __ poison __ other (describe) __

PPE required: (hand, foot, face, eye, clothing, etc.) __

4. Reference the associated MSDS for each hazardous chemical used and list the recommended PPE for that chemical.

Chemical: __________________________ __________ MSDS PPE: __________________________ __________

Certification ___________________________________ ________________________________

Signature ________________________________ Date ________________________________
Sample PPE Walkthrough Survey and Certification

Department ___________________ Task _______________________________________ Date _________

Assess each task for hazards using following criteria: (1) **Type of injury or illness** possible; (2) **Probability** - unlikely, likely, highly likely; and (3) **Severity** - death, serious injury/illness, not serious injury/illness.

1. **Sources of motion** - machinery, processes, tools, materials, people etc. ______________________________________

 Required PPE: __

2. **Sources of high temperatures** - that could cause burns, ignition, injury to eyes, etc. __________________________

 Required PPE: __

3. **Sources of chemical exposure** - splash, vapor, spray, immersion, etc. _____________________________________

 Required PPE: __

4. **Sources of harmful atmospheres** - dust, fumes, gasses, mists, vapors, fibers, etc. __________________________

 Required PPE: __

5. **Sources of light radiation** - welding, brazing, cutting, furnaces, heat treating, high intensity lights, etc. ________

 Required PPE: __

6. **Sources of falling objects** - materials, equipment, tools, etc. __

 Required PPE: __

7. **Sources of sharp objects** - which could pierce the skin - feet, hands, face etc. _______________________________

 Required PPE: __

8. **Sources of rolling or pinching that could crush** - hands, feet. __

 Required PPE: __

9. **Layout of workplace and location of co-workers** - adequate space for task. _________________________________

 Required PPE: __

10. **Sources of contact with electricity** - wires, grounding, __

 Required PPE: ___

I certify that I have conducted a workplace survey on the above task to assess the need for personal protective equipment. The personal protective equipment noted above will be required while performing this task.

__ ________________________
Signature Date
Workstation Ergonomic Hazard Analysis

Yes No
1. ____ ____ Does the working space allow for a full range of movement?
2. ____ ____ Are mechanical aids and equipment available?
3. ____ ____ Is the height of the work surface adjustable?
4. ____ ____ Can the work surface be tilted or angled?
5. Is the workstation designed to reduce or eliminate:
 ____ ____ Bending or twisting at the waist?
 ____ ____ Reaching above the shoulder?
 ____ ____ Static muscle loading?
 ____ ____ Extending the arms?
 ____ ____ Bending or twisting the wrists?
 ____ ____ Raised elbows?
6. ____ ____ Is the employee able to vary posture?
7. ____ ____ Are hands and arms free from pressure from sharp edges on work surfaces?
8. ____ ____ Is an armrest provided where needed?
9. ____ ____ Is the floor surface flat?
10. ____ ____ Are cushioned floor mats provided when workers stand for long periods?
11. ____ ____ Is the chair or stool easily adjustable and suited to the task?
12. ____ ____ Are all task requirements visible from comfortable positions?
13. ____ ____ Is there a preventive maintenance program for tools and equipment?
Ergonomic Task Analysis Worksheet

Yes No

1. Does the design of the task reduce or eliminate:
 ___ ___ Bending or twisting?
 ___ ___ Crouching?
 ___ ___ Bending or twisting the wrists?
 ___ ___ Extending the arms?
 ___ ___ Raising elbows?
 ___ ___ Static muscle loading?
 ___ ___ Clothes-wringing motions?
 ___ ___ Finger pinch grip?

2. ___ ___ Are mechanical devices used when necessary?

3. ___ ___ Can the task be done with either hand?

4. ___ ___ Can the task be done with two hands?

5. ___ ___ Are pushing and pulling forces reduced or eliminated?

6. ___ ___ Are the required forces acceptable?

7. ___ ___ Are the materials able to be held without slipping?

8. ___ ___ Are the materials easy to grasp?

9. ___ ___ Are the materials free from sharp edges or corners?

10. ___ ___ Do containers have good handholds?

11. ___ ___ Are jigs, fixtures and vises used where needed?

12. ___ ___ Do gloves fit properly, and are they made of the proper fabric?

13. ___ ___ Does the task avoid contact with sharp edges?

14. ___ ___ When needed, are push buttons designed properly?

15. ___ ___ Does personal protective equipment keep from getting in the way of the task?

16. Are high rates of repetitive motion avoided by:
 ___ ___ Job rotation?
 ___ ___ Self pacing?
 ___ ___ Sufficient rest pauses?
 ___ ___ Adjusting the job to the skill level of the worker?

17. Is the employee trained in:
 ___ ___ Proper work practices?
 ___ ___ When and how to make adjustments?
 ___ ___ Signs and symptoms of potential physical problems?
Hand tool analysis checklist

<table>
<thead>
<tr>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Are tools selected to avoid:</td>
<td></td>
</tr>
<tr>
<td>______</td>
<td>______</td>
</tr>
<tr>
<td>2.</td>
<td>______</td>
</tr>
<tr>
<td>3.</td>
<td>______</td>
</tr>
<tr>
<td>4.</td>
<td>______</td>
</tr>
<tr>
<td>5.</td>
<td>______</td>
</tr>
<tr>
<td>6.</td>
<td>______</td>
</tr>
<tr>
<td>7. Are tools equipped with handles:</td>
<td></td>
</tr>
<tr>
<td>______</td>
<td>______</td>
</tr>
<tr>
<td>______</td>
<td>______</td>
</tr>
<tr>
<td>______</td>
<td>______</td>
</tr>
<tr>
<td>8.</td>
<td>______</td>
</tr>
<tr>
<td>9.</td>
<td>______</td>
</tr>
<tr>
<td>10.</td>
<td>______</td>
</tr>
<tr>
<td>11.</td>
<td>______</td>
</tr>
<tr>
<td>12.</td>
<td>______</td>
</tr>
<tr>
<td>13. Have employees been trained:</td>
<td></td>
</tr>
<tr>
<td>______</td>
<td>______</td>
</tr>
<tr>
<td>______</td>
<td>______</td>
</tr>
<tr>
<td>______</td>
<td>______</td>
</tr>
</tbody>
</table>
Materials handling checklist

<table>
<thead>
<tr>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>___</td>
<td>____</td>
</tr>
<tr>
<td>___</td>
<td>_____</td>
</tr>
<tr>
<td>1. ____ ____ Has excessive weight lifting been reduced?</td>
<td></td>
</tr>
<tr>
<td>___</td>
<td>____</td>
</tr>
<tr>
<td>2. ____ ____ Are materials moved over minimum distances?</td>
<td></td>
</tr>
<tr>
<td>___</td>
<td>____</td>
</tr>
<tr>
<td>3. ____ ____ Is the distance between the object and the body minimized?</td>
<td></td>
</tr>
<tr>
<td>___</td>
<td>____</td>
</tr>
<tr>
<td>4. Are walking surfaces:</td>
<td></td>
</tr>
<tr>
<td>____ ____ level?</td>
<td></td>
</tr>
<tr>
<td>____ ____ wide enough?</td>
<td></td>
</tr>
<tr>
<td>____ ____ clean and dry?</td>
<td></td>
</tr>
<tr>
<td>____ ____ well lit?</td>
<td></td>
</tr>
<tr>
<td>___</td>
<td>____</td>
</tr>
<tr>
<td>5. Are objects:</td>
<td></td>
</tr>
<tr>
<td>____ ____ easy to grasp?</td>
<td></td>
</tr>
<tr>
<td>____ ____ stable?</td>
<td></td>
</tr>
<tr>
<td>____ ____ able to be held without slipping?</td>
<td></td>
</tr>
<tr>
<td>___</td>
<td>____</td>
</tr>
<tr>
<td>6. ____ ____ Are there handholds on these objects?</td>
<td></td>
</tr>
<tr>
<td>___</td>
<td>____</td>
</tr>
<tr>
<td>7. ____ ____ When required, do gloves fit properly?</td>
<td></td>
</tr>
<tr>
<td>___</td>
<td>____</td>
</tr>
<tr>
<td>8. ____ ____ Is the proper footwear worn?</td>
<td></td>
</tr>
<tr>
<td>___</td>
<td>____</td>
</tr>
<tr>
<td>9. ____ ____ Is there enough room to maneuver?</td>
<td></td>
</tr>
<tr>
<td>___</td>
<td>____</td>
</tr>
<tr>
<td>10. ____ ____ Are mechanical aids easily available and used whenever possible?</td>
<td></td>
</tr>
<tr>
<td>___</td>
<td>____</td>
</tr>
<tr>
<td>11. ____ ____ Are working surfaces adjustable to the best handling heights?</td>
<td></td>
</tr>
<tr>
<td>___</td>
<td>____</td>
</tr>
<tr>
<td>12. Does material handling avoid:</td>
<td></td>
</tr>
<tr>
<td>____ ____ movements below knuckle height and above shoulder height?</td>
<td></td>
</tr>
<tr>
<td>____ ____ static muscle loading?</td>
<td></td>
</tr>
<tr>
<td>____ ____ sudden movements during handling?</td>
<td></td>
</tr>
<tr>
<td>____ ____ twisting at the waist?</td>
<td></td>
</tr>
<tr>
<td>____ ____ excessive reaching?</td>
<td></td>
</tr>
<tr>
<td>___</td>
<td>____</td>
</tr>
<tr>
<td>13. ____ ____ Is help available for heavy or awkward lifts?</td>
<td></td>
</tr>
<tr>
<td>___</td>
<td>____</td>
</tr>
<tr>
<td>14. Are high rates of repetition avoided by:</td>
<td></td>
</tr>
<tr>
<td>____ ____ job rotation?</td>
<td></td>
</tr>
<tr>
<td>____ ____ self pacing?</td>
<td></td>
</tr>
<tr>
<td>____ ____ sufficient rest pauses?</td>
<td></td>
</tr>
<tr>
<td>___</td>
<td>____</td>
</tr>
<tr>
<td>15. ____ ____ Are pushing and pulling forces reduced or eliminated?</td>
<td></td>
</tr>
<tr>
<td>___</td>
<td>____</td>
</tr>
<tr>
<td>16. ____ ____ Does the employee have an unobstructed view of the handling task?</td>
<td></td>
</tr>
<tr>
<td>___</td>
<td>____</td>
</tr>
<tr>
<td>17. ____ ____ Is there a preventive maintenance program for equipment?</td>
<td></td>
</tr>
<tr>
<td>___</td>
<td>____</td>
</tr>
<tr>
<td>18. ____ ____ Are workers trained in correct handling and lifting procedures?</td>
<td></td>
</tr>
</tbody>
</table>
Computer workstation checklist

Yes No

1. Is the chair adjusted to ensure proper posture, such as:
 ___ ___ knees and hips bent at approximately 90 degrees?
 ___ ___ feet flat on floor or footrest?
 ___ ___ arms comfortably at sides with elbows at 90-degree angle?
 ___ ___ straight wrists at keyboard?

2. Does the chair:
 ___ ___ adjust easily from the seated position?
 ___ ___ have a padded seat that is adjustable for height and angle?
 ___ ___ have an adjustable backrest?
 ___ ___ provide lumbar support?
 ___ ___ have a stable caster base?

3. ___ ___ Is there sufficient space for knees and feet?

4. ___ ___ Are the height and tilt of the keyboard work surface adjustable?

5. ___ ___ Is the keyboard prevented from slipping when in use?

6. ___ ___ Is the mouse or pointing device at the same level as the keyboard?

7. ___ ___ Does keying require minimal force?

8. ___ ___ Is there an adjustable document holder?

9. ___ ___ Are arm rests provided where needed?

10. ___ ___ Is the screen clean and free of flickering?

11. ___ ___ Is the top line of the screen slightly below eye level?

12. ___ ___ Does the monitor have brightness and contrast controls?

13. ___ ___ Is the monitor 18-30 inches from the worker for viewing?

14. ___ ___ Is there sufficient lighting without causing glare?

15. ___ ___ Is an anti-glare screen used if necessary?

16. ___ ___ Are adequate rest breaks provided for task demands?

17. Are high stroke rates avoided by:
 ___ ___ job rotation?
 ___ ___ self pacing?
 ___ ___ adjusting the job to the skill of the worker?
 ___ ___ adequate rest pauses?

18. Are employees trained in:
 ___ ___ proper postures?
 ___ ___ proper work methods?
 ___ ___ when and how to adjust their workstations?
 ___ ___ how to seek assistance with concerns?
Symptoms Survey

Name _______________________________________ Date ___________________________

(Optional)

Work Location ____________________________________ Job _________________________

Shift _______________ Supervisor ________________________

(Optional)

Time on this job: ____ Less than 3 months ____ 3 months to 1 year ____ 1 year to 5 years
 ____ 5 years to 10 years ____ Over 10 years

Have you had any pain or discomfort during the last year? ____ Yes ____ No

If you answered “Yes” to the above question, carefully shade in the area of the drawings below which indicate the location of the pain which bothers you the most.

Front

Back
Symptoms Survey

Name (Optional) ___

Please complete a separate page for each area that bothers you.

Check area __ Neck __ Shoulder __ Elbow __ Forearm
 __ Hand/Wrist __ Fingers __ Upper back __ Low back
 __ Thigh __ Knee __ Low leg __ Ankle/foot

1. Please put a check by the word(s) that best describe your problem.
 _ Aching _ Cramp _ Numbness _ Tingling
 _ Stiffness _ Burning _ Pain _ Weakness
 _ Swelling _ Color Loss _ Other (Specify) ________________

2. When did you first notice the problem? __ recently ___ number of months ago ___ years ago

3. How long does each episode last? __

4. How many separate episodes have you had in the last year? ________________________

5. What do you think caused the problem? ___
 __
 __
 __

6. Have you had this problem in the last 7 days? __ Yes ___ No

7. (optional) How would you rate the level of pain you experience related to this problem? Mark an “X” on the line.
 Right now: None --Unbearable
 At its worst: None ---Unbearable

8. Have you had medical treatment for this problem? __ Yes ___ No
 If yes, what was the diagnosis? __

9. How many days have you lost from work in the last year because of this problem? _____

10. How many days in the last year were you on modified duty because of this problem? ______

11. Have you changed jobs because of this problem? __ Yes ___ No

12. Please comment on what you think would improve your symptoms:
 __
 __
 __
Sample Safety Inspection Report

I. Background

<table>
<thead>
<tr>
<th>Inspection Date</th>
<th>Dept.</th>
<th>Inspector(s)</th>
<th>Inspection Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>9/00</td>
<td>Warehouse</td>
<td>B. Wood (Management rep.)</td>
<td>Quarterly Safety Committee</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R. Smith (Employee rep.)</td>
<td></td>
</tr>
</tbody>
</table>

II. Findings

A. Hazardous Conditions

1. Platform storage area does not have guardrails.
 a. Root cause(s). Missing guardrails were previously identified but not budgeted for correction. Indicates inadequate policy and procedures to respond to hazards. Note: Since management has prior knowledge of this hazard and has elected not to take action, this hazard may be classified as a willful violation by OSHA and subject to an increased penalty.

b. Possible Accident(s) and Associated Cost(s):
 (1) Struck by falling object. Average direct accident cost for this accident is $9,851. Estimated indirect cost $36,000. Total estimated cost if accident occurs is $45,851.

 (2) Fall from elevated platform. Average direct accident cost for this accident it $15,668. Estimated indirect cost $60,000. Total estimated cost if accident occurs is $75,668.

c. Exposure, Probability and Severity:
 (1) Exposure. Twelve employees work in the area throughout an 8-hour shift. Five employees routinely work on the platform. Approximately 30 employees walk through the hazard area each day.

 (2) Probability. It is likely that one of the above accidents will occur within the next year. There was a near miss six months ago when an employee was nearly hit by a falling container.

 (3) Severity. Most likely: Serious physical harm. Worst case: Fatality.

B. Hazardous Work Practices:

1. Workers are using improper lifting techniques:
 a. Root Cause(s). Equipment to assist employees in lifting is not present. Through interviews and records reviews it has been determined that workers are not being properly trained in safe lifting techniques. Indicates an inadequate training program addressing ergonomics hazards.

c. Exposure, Probability and Severity.
 (1) Exposure. All employee in the warehouse are expected to lift heavy containers throughout all 8-hour work shifts.

 (2) Probability. It is highly likely that one or more employees will experience a back strain or sprain in the next year. OSHA 200 Log/801 Reports indicate we experience five such accidents annually (1995-1999).

 (3) Severity. Most likely: Serious physical harm. Worst case: Serious physical harm.
Section III. Recommendations.

A. Hazardous Conditions:
 1. Missing guardrails.
 b. Work practice/Administrative controls. Instruct employees not to work on platform unless absolutely necessary until guardrails are installed. Investment: $500. Recommended action date: Immediately.
 c. Personal Protective Equipment. Fall restraint system should be used by workers on platform until guardrails are installed. Investment: $400. Recommended action date: Immediately.
 d. System improvements. (Weaknesses/recommendations in the safety system may be determined most effectively by the safety coordinator/committee) Improve inspection procedures to include management review of inspection reports. Establish policy/procedures to ensure reasonable response times to recommendations. Investment: $1000

B. Hazardous Work Practices:
 1. Unsafe lifting techniques.
 a. Engineering controls. Purchase equipment to lift heavy containers. Cost: $12,000. Recommended action date: 1/1/98.
 b. Work practice/Administrative controls.
 (1) Train all employees on safe lifting techniques and use of personal protective equipment. Investment: $1,000. Recommended action date: Immediately.
 (2) Train management on accountability system. Ensure warehouse supervisors properly monitor lifting techniques, provide feedback to employees, and enforce safety rule on lifting for repeated violations. Investment: $1000. Recommended action date: Immediately.
 c. Personal protective equipment. N/A.
 d. System improvements. Establish policies and procedures to ensure adequate safety training in a timely manner. Improve/reinforce accountability policy. Ensure all employees review and certify understanding of new rule. Investment: $3000. Recommended action date: Immediately.

Section IV. Conclusion:

A. Total potential direct and indirect accident costs: $171,000 (Does not include possible OSHA penalties)
B. Total investment: $24,700
C. Estimated five-year ROI = 692%
C. Commendable: Observations during the inspection indicated that safe use of forklifts was excellent. All isles were clear and housekeeping in general was excellent.

_____________________________________ _____________________________________
Inspector Inspector
Section V. Action Plan [Completed by decision maker]

A. Hazardous conditions:
 1. Missing guardrail.
 a. Interim measures. [Responsible individual] will ensure current guardrail is reinforced immediately.
 b. Long-term corrective actions. [Responsible individual] new guardrail is purchased and installed by [Correction date].

B. Unsafe work practices and procedures:
 1. Improper lifting
 a. Interim measures. [Responsible individual] will ensure affected workers and their supervisors receive proper lifting techniques training by [Date]. Supervisors will increase supervision, provide immediate feedback, and report observations to the safety coordinator.
 b. Long-term corrective actions. [Responsible individual] will ensure a pneumatic lift device is purchased and installed by [Correction date].

C. System improvements.
 1. [Responsible individual] will ensure the safety inspection plan is revised to include review by top management and a schedule is developed for written response to written recommendations. Action to be completed by [Correction date].
 2. [Responsible individual] will ensure proper lifting techniques training is included in new employee orientation and affected employee and supervisor training plans by no later than [Correction date].

_________________________________ _________________________________
[Decision Maker] Date

Section V. After Action Report [Completed by safety coordinator]

A. Hazardous conditions:
 1. Missing guardrail.
 a. Interim measures. Guardrail reinforced. Corrected on [Date]. Item closed
 b. Long-term corrective action. New guardrail installed on [Date]. Item closed.

B. Unsafe work practices and procedures:
 1. Improper lifting
 a. Interim measures. Affected employees/supervisor training is complete. Item closed. Increased supervision and feedback, observations are being reported. Item Open.
 b. Long-term corrective action. A pneumatic lift device is purchased and installed. Item closed.

C. System improvements.
 1. The safety inspection plan is revised to include review by top management and a schedule is developed for written response to written recommendations. Item closed.
 2. Proper lifting techniques training is included in new employee orientation and affected employee and supervisor training plans. Item closed.

_________________________________ _________________________________
Safety Coordinator Date
OSHA Software Program - Download now!

OSHA's Hazard Awareness Advisor is powerful, interactive, expert software. It will help you (especially, small businesses) identify and understand common occupational safety and health hazards in your work place. It will ask you about activities, practices, materials, equipment, and policies at your work place. Most questions have follow-up questions (depending upon your previous answers). The Hazard Awareness Advisor uses your answers to determine the hazards that are likely to be present. Then, it prepares a unique, customized report that briefly describes the likely hazards and the OSHA standards which address those hazards. You can use this Advisor at

or download it and run it in the Windows environment.

• This Advisor is an introduction to hazard recognition.
• It is NOT able to identify ALL hazards.
• It is NOT a substitute for safety and health professionals.
• It will NOT determine compliance with OSHA standards.
• It is designed for beginners not experts, but experts can use it, too.

The Hazard Awareness Advisor:

• asks questions about workplace activities, equipment, materials, etc.,
• analyzes your answers with expert decision-logic,
• alerts people in General Industry to common occupational hazards,
• explains briefly the nature of those hazards,
• points out applicable OSHA standards,
• identifies Consultation Offices for the user's state, and
• provides definitions of keywords and phrases via a "keyword" button.